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This article deals with a measure of the complexity of a physical system recently 
proposed by Schapiro and puts it into the context of other recently discussed 
measures of complexity. We discuss this new measure in terms of a simple Mar-  
kovian evolution model, extending and specifying the model given by Schapiro, 
which has the advantage of being analyically tractable. We find that the proposed 
complexity measure leads to interesting results: there exists a kind of phase 
transition in this system with a vanishing value of the probability c of generating 
a new species. This phase transition is related to a specific complexity of about 
3 bits. By investigating decreasing c (c ~ N -q, N the total number of individuals), 
we find that the complexity per species grows monotonically with q, diverging 
logarithmically with N as q goes to infinity. 

1. INTRODUCTION 

The last few years have seen a growing interest in what can be called 
complex systems. It seems that the theoretical tools of physics developed so 
far are only poorly able to treat really complex systems, and that new con- 
cepts are probably needed. To understand the nature of the problem, it is 
appropriate to start with the simplest examples of sufficiently complex 
behavior. It is commonly believed that the properties of chaotic, nonlinear 
systems represent the first fingerprint of complexity in physical systems. To 
be more specific: systems which display complex behavior hold a very 
delicate balance between order and disorder. In a recent investigation in the 
theory of cellular automata (CA), Langton (1990) found that the most 
complex behavior in a certain class of cellular automata is found "at the 
edge of chaos," i.e., between the class I and II CA on the one hand, and the 
chaotic class III CA on the other. In the CA, the role of stochastic or 
disordered behavior is played by the deterministic chaos which class III CA 
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seem to display. We consider this line of thought in a related article (Giinther 
et  al., 1991). 

The first thing to do in trying to develop a physical theory for a new 
class of phenomena is to look for an observable which characterizes the 
properties in which one is interested. 

Based on work by Kolmogorov (1965) and Shannon and Weaver 
(1959), who were the first to use the difficulty of  forecasting the behavior of 
a given system as a measure of complexity, there have been many proposed 
measures of complexity; see, for instance, Chaitin (1966), Lempel and Ziv 
(1976), Wolfram (1984), Grassberger (1986), Hogg and Huberman (1986), 
Kaspar and Schuster (1987), Peliti and Vulpiani (1988), Crutchfield and 
Young (1989), Badii (1990), D'Allessandro and Politi (1990), Auerbach and 
Proccacia (1990), Badii et  al. (1991), and Urias (1991). 

In order to get a clear picture of the requirements such a measure should 
satisfy, we cite the following points made by Badii et  al. (1991), who claimed 
that such a measure: (1) should be relative of the observer's ability; (2) 
should lie between order and disorder, i.e., should be zero if the system is 
totally ordered or if it is totally disordered; (3) should not be extensive; and 
(4) should not increase if one takes direct products of independent systems. 

There are some remarks we would like to add to this list: The first 
point, the dependence of the measured complexity on the observer's abilities, 
has to be strengthened: the measure of complexity is not only relative to the 
observer's abili'ties, we conjecture that it is relative to her own complexity. 
This conjecture is based on the following considerations: It is known that 
observation always influences the quantity under observation and that as 
long as one deals with classical objects this influence can be made arbitrarily 
small. But the following subtleties arise if one tries to measure complexity. 

Any observation consists in some process during which the observer 
interacts with the observed system. The measuring process itself is charac- 
terized by a certain complexity; this means that in contrast to conventional 
situations, the very quantity under study describes the process of studying. 
In the case of complexity, we want to characterize a property of the system 
which is also a property of the process of measurement itself. 

Suppose, for instance, that the observer is a computer, who tries-- 
equipped with some program--to analyze a given time series. The program 
on this computer has a certain complexity. It is obvious that the internal 
state of the computer changes in the course of the calculation. What we have 
in fact is a system composed of the computer program and the data set. The 
chances of this joint system are in a certain sense representations of the 
structures of the system under observation. 

Thus, the measuring apparatus must be able to support a process of 
observation which is at least as complex as the process to be studied; if it 
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cannot support such a process, the complexity of the measuring process will 
be smaller and hence the measured complexity will be smaller than the "true" 
complexity of the system at hand. Thus, the computer program which gives 
rise to structures of the demanded complexity must itself possess a certain 
minimal complexity sufficient to build up such structures during the inter- 
action with the observed system. 

Finally, complexity is not a local, additive quantity in the sense that 
measuring only parts of the system and adding the respective contributions 
wilt lead to a correct value for the complexity of the whole, as in a length 
measurement where we can use a small rule of 30 cm to measure arbitrary 
distances. 

The second point of Badii et al.'s list is commonly believed. In the light 
of our considerations above we only add a note: if the observer knows 
exactly all about a system, then even for the very complex-looking behavior 
of chaotic systems or of cellular automata, the measure of complexity should 
be zero, too! We claim that the measure of complexity should be zero for 
deterministic systems and an arbitrary complex observer, which in Badii et 
al.'s terminology is an observer with arbitrarily high abilities (Badii et al. 
were aware of this fact, which they mentioned in a footnote). 

The first two points are fulfilled by the measure proposed by Schapiro 
(1991), which is just the mutual information between two successive states 
of the system under consideration in the course of time and which will be 
called "physical complexity": 

PC(t)= ~ p(S,,  S,-~) In p(St,  S,_O 
{s,,s,_,~ p( S,)p( S,-  ~) 

= H m a r g ( t ) - - H c o n d ( t [ t - -  1) (1) 

This concept of complexity is based on the image of time itself as a sort of 
channel through which the successive states of the system communicate. If 
the state at time t corresponds of the "source," then the state at time t+ 1 
corresponds to the "receiver" in Shannon and Weaver's terminology. This 
concept realizes the original intention of Kolmogorov to interpret complexity 
as a measure of the unpredictability of the "next" state in the generation 
process of a symbolic sequence. 

The last two points of Badii et al.'s list have to be discussed further in 
the light of (1). In the model we consider below, we find that the complexity 
measure (1) is an extensive variable if considered as an ensemble average 
over such Markovian systems. However, if we normalize the entropies which 
constitute the physical complexity PC(t) of the number of species in our 
simple evolution process, or equivalently to the number of features, we get 
an intensive variable which displays a very interesting behavior. In the case 
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of the evolution model it is easy to speak about features or species. One can 
imagine, however, that there exist systems in which there is a large amount 
of arbitrariness in deciding what constitutes a "feature." This is again a 
point where the observer comes into play. The problem in the case of a 
conventional physical measurement is not to find features, because any 
observation is based on the a priori definition of observables and this defini- 
tion induces a "minimal" definition of what constitutes a feature; in a general 
context, however, it may be difficult to find or to define observables. But in 
many cases at least the choice of the "resolution" may be at the observer's 
disposal, and can determine the value of the measured complexity. Consider, 
for example, a length measurement: the observable in this case is obviously 
length, but what is arbitrary is the resolution at which the system has to be 
considered; and both the observable and the resolution determine the fea- 
ture. This is, in our opinion, a property which cannot be circumvented for 
any reasonable measure of complexity. But the variation of the observed 
value depending on the resolution may itself lead to an interesting charac- 
terization of a complex system. 

We now turn to the discussion of the proposed evolution model, and 
look at what one can learn from the behavior of a simple toy model for a 
complex system. 

2. THE MODEL 

We consider as a simple mathematical model for a complex system the 
following nonstationary Markov process. A population of A species, each 
consisting of n~ individuals, evolves according to the following transition 
probabilities: 

1. The probability c ( N )  for a new species to be generated is 

P(A ; N ~  A + 1 ; N +  1) = c ( N )  (2) 

probability for an already existing species to get a new 2. The 
individual is 

P(ni ; N ~ ni+ 1 ; N +  1) = [1 - c(N)]n,  . 7 (N)n i  (3) 
N N 

To ensure that at each time step there is exactly one individual born, we 
choose the boundary condition 

N 

ni(1) = ~,l=~ ~ n~=N (4) 

Thus, we have at time step N exactly N individuals in our population. 
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To calculate the complexity of the process, we need the total probability 
distribution P(nm, n2 . . . . .  nN; N). This expression contains all possible 
information about our system and is difficult to evaluate. We note, however, 
that the different species of the population interact only by means of the 
boundary condition. If the mean number of species is large, but much smaller 
than the total number of individuals, this interaction can be neglected and 
the total probability distribution factorizes: 

N 
P ( n l ,  n2 . . . . .  nN,  N )  ~ H P ( n i ;  N )  (5) 

i=1 

The probability distributions for a single species and for the number of 
species at a given time step N can be derived by solving the master equations 

P(A + 1; N +  1) = c(N)P(A ; N) + r(N)P(A + 1; N) (6a) 

ni+l'~ P(n'+I'N+I)=Y(N)n'p(n';N)+' N I+y(N)--~--)P(n,+I;N) (6b) 

This is done in Appendix A. One gets for the probability distributions of 
species and for the distribution of individuals within species 

1 N - I  
P(A;N)= OJ-' I-I [l+c(k)(s-1)]ls=o (7a) 

(A - 1)! ~=~ 

c /  N-I ~-~ n~--I (_)l-J 1-I 1--1 y ) (7b) P(n,; N)= Z P(k -  l" to_) "~ 
' /=1= \ l - 1 ]  

to=k - I k= to+ 1 

Where P(kl to) represents the probability that there are exactly k species at 
time t e. 

To investigate the model further, we must specify the generating param- 
eter c. In general the probability to create a new species will be a function 
of time that has values in the unit interval. Values near one will lead to a 
system with almost as many species as individuals, whereas values near zero 
correspond to a system with a mean number of species much smaller than 
the total number of individuals. 
We will consider two cases or the functional dependence of e on time: 

1. A constant rate of production of new species. 
2. A decreasing rate proportional to N-q. 

3. THE MODEL AT CONSTANT SPECIES PRODUCTION RATE 

Despite the very complicated explicit expression for the general prob- 
ability distribution, there are some quantities which can be evaluated quite 
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simply. Thus, it is possible to calculate the expectation values for the number 
of species and the number of individuals within each species without getting 
into the trouble of explicitly handling complicated probability distributions. 
We have solved the master equations for the process in terms of the generat- 
ing functions, so that we can use (A3b) of Appendix A to calculate the 
moments of the distribution. One gets in the simplest case of the first moment 

N-1 N-I  ( ~ , ( j ) )  
(nk(N))= Y, ce (k - l , t )  I-I 1+ (8) 

t f f i k -1  j=t+l j / 

If one approximates now the first sum by taking the expectation value of 
the time at which species k is generated, one gets 

(nk(N)) =\-~k] (9) 

Using the relation for the mean number of species at time N, which can be 
derived from equation (A3a), 

(A> = 1 + ( N -  1)c (10) 

we obtain the expected time of generation of species k 

k - I  
T~= 1 + - -  ( l l )  

C 

Inserting this value into (9), we get for the mean number of individuals 

1--c 
n N cN 

This relation between rank (= species number) and number of elements 
(= number of individuals) is known as Zipf's law and is found in a wide 
range of contexts, from frequencies of words in a large text (Guiter and 
Arapov, 1982), to listings of towns according to inhabitants, and many more 
examples. For a list of references see Schapiro (1991). 

Having solved the master equation for the evolution process, we can 
calculate the probability distribution. The probability distribution for species 
with number higher than one is approximated by (see Appendix A) 

Pk(nk; N) =ak(1 --ak)~ -1 

[ k -  1'~'-c (13) 
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Using these results, we can calculate the complexity of the evolution process. 
Starting with the expression for the entropy of species k, which can be 
evaluated exactly to give 

N-I 
Hk = -  ~., ak(1--ak) "-k-1 ln[ak(l--ak) ~-~] 

nk = 1 

~ - [|n ak -Ji - 1 -  akak In(1-  a]r (14) 

and summing over k, one obtains in the limit of  large N and small c 

(A)  l + ( N - 1 ) c  V 1+ -~ , (1)  (15) 

where ~t(x) is the polygamma function d ln[F(x)]/dx. 
To calculate the complexity, we must add the conditional entropy, 

which is given by 
N--I 

Hco,~ = Z H~ ~ 
k=| 
N-I 

H~ ~ ~ P(nk; N)[p,~ In p,k+ (1 -p,~) In(1 -p,~)] (16) 

nk=l 

P,k = (1 - c) m, 
- N 

Taking again N ~ ~ and c <~ 1, this can be evaluated to give 

H c~ _ 1 - c In N (17) 
( A )  cU 

That means that the conditional entropy vanishes for constant c in the limit 
of large N. The complexity is then given by the first term in (1). 

We note that the maximal complexity, according to (15), regarded as a 
function of the parameter c is attained at c = 1/,,/N. The numerical value at 
the maximum is ~r2/6, which is about 2.37 bits per species. This value is an 
upper bound. 

4. THE MODEL AT DECREASING SPECIES 
PRODUCTION RATE 

We now turn to the case of decreasing c. The actual form of c as a 
function of  time is of marginal interest--we choose it to be c ( N ) = b N  -q, 
where q varies between 0 and oo. If  q = 0, we obtain the already discussed 
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case of constant production rate. We will be interested in the behavior of 
the complexity for higher values of q. Intuitively one expects that if q grows 
unbounded, there will be only a small number of species being produced. In 
the extreme case of only one species surviving, one should expect the com- 
plexity to vanish. For q = 0 we have already obtained the result of nonvanish- 
ing complexity. It will be of interest to see if the complexity increases without 
bound if q grows, or if there is some maximum at a certain value of q beyond 
which the complexity decreases. 

We first calculate the expectation value of the numbers of individuals 
n,-. In the same way as before, we get 

n - N  [ b ~l/(l-q)exPl__q_~\___~jVb (<A>l-q/(l-q) ] <k>-  (18) 

We again find a Zipf-like behavior, but this time with the exponent 1/ 
( I - q )  slightly larger than unity. This is a more conventional case for 
actual examples, such as the rankings of texts (Guiter, 1982). We note 
that the frequencies ni/N do not vanish in the limit of large N, in contrast 
to the case of constant c; we interpret this behavior as the ability of the 
system to conserve some kind of a "minimal structure." 

Turning to the evaluation of the complexity, we use the solution of 
the master equations (6). We approximate the distribution of generation 
times by the mean value: 

( -q' 
<A),~, b~N I-q = ~  <to> ~ ( l - q )  (19) 

l - q  

Inserting this into the solution (7b), we finally obtain for the probability 
distribution of species k 

Pk(nk ; N )  =ak(l --ak) n~- 1 
(20) ( k )l/(i-q) F b {<A>~q/(l-q) l 

expL- k-E-) - j 

To evaluate the complexity, we need the marginal and the conditional part. 
As before [see (16)], we can derive the conditional part: 

H~'~ N (-(1-q)(I-2q)/(l-q)) (21) 
<A> N l - q  \ q 

This equation, which is valid for q < 1/2, means that in the limit of large N 
this does not contribute to the complexity. 
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The marginal part can be evaluated analytically under the assumption 
that the exponent in ak does not vary much in the region of interest for k, 
which seems reasonable, since it can be written 

b ((A))q/(I-q) bl+qkq/(q-l) 
qN q\ k ] q(1-q)q 

(22) 

If k is varying, for instance, from 10 to m, this expression varies between 
0.1 and 0, so that the exponent in (20) has its minimum at 1.0 and its 
maximum at 1.1. (Note that because we sum over infinitely many k values, 
a finite number of terms with k smaller than a given value do not contribute.) 

Summing over all n and all allowed values of k, we find for the complex- 
ity per species 

C n W(1) -W(1 - q )  

(A) (,4) q ln2  
(23) 

The numerical values for the physical complexity PC given by this formula 
vary from PC=2.37 bits for q=0 to PC=4.0 bits at q=0.5. This means that 
this time we find the value of 2.37 as a lower bound for the complexity of 
the evolution model. As we mentioned above, the model with time-dependent 
c is able to conserve a minimal structure (the ranking hierarchy) in the 
course of time; this has to be compared with the constant-c model, where 
the Zipf structure is lost for large times. 

Because we obtained the value of 2.37 bits as an upper bound in this 
system and the same value as a lower bound in the structure-conserving 
system, one may interpret this specific complexity as a critical value necessary 
to conserve any structure, which is, for example, a condition for a system 
to be able to do computation. 

We are interested in the behavior of the physical complexity as a func- 
tion of q. Note that for q > 1 the expectation value of the species number 
(A) remains finite. With the form for c(N) as chosen above, in the limit 
q ~  ov the value of (A) approaches 2. In this case the two species are 
generated in the first two time steps; the model consisting of two species can 
be solved exactly (see Appendix B); we find that in this case the specific 
marginal entropy grows proportional to In(N), while the specific conditional 
entropy is just 1 bit. In this case even the specific entropy becomes infinite 
with N ~  m. So this model does not show the kind of phase transition 
which can be found in dynamical systems such as CA and the logistic map 
(Crutchfield and Young, 1989), where the complexity is largest at intermedi- 
ate values of the entropy. We will mention this point in the last section, 
where we discuss possible implications. 
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5. NUMERICAL RESULTS 

In order to check the analytical results obtained above, we performed 
numerical simulations of an ensemble of such Markovian systems. In most 
cases we used an ensemble which consists of 1000 systems whose evolution 
we followed for N = 20,000 time steps. It is straightforward to calculate from 
such simulations the expectation values of the number of individuals per 
species, i.e., Zipf 's law. The results are shown in Figure 1 for a system with 
constant c(N),  compared with the theoretical curve given by (12). In Figure 
2 we simulate a system with nonconstant c(N) and compare the results with 
(18). It can be seen that the numerical results are well described by Zipf's 
law, i.e., (12) and (18). The numerical values turned out to be slightly larger 
than the theoretical ones, which is easily explained by the finiteness of  the 
simulations. 

It is also easy to calculate the probability distributions for the individual 
numbers of a single species, which is shown in Figure 3 for the distribution 
for the first species and in Figure 4 for the fifth species in the case of constant 
c(N).  Also included in both figures for comparison are the theoretical curves 
given by (A4) and (13). Again the agreement between theory and numerical 
experiment is excellent. 

It is more difficult to calculate the complexity. If  the species number is 
high enough, the probability distributions are well described by only a few 
different individual numbers for these species. Therefore one obtains the 
entropies just by summation over the probability distribution so obtained. 
However, for low species number, because of the low number of systems 

<n(k) > 

10 4. 

3 
i0 

2 
i0 

1 
i0 

t I I I rank k 
; 'i 1 1 2 2 

i0 2. i0 5. I0 i0 2 . I0 

Fig. 1. Comparison between the numerically determined frequency-rank relation (solid curve) 
and the theoretical one (light curve), as given by equation (15). We choose c(N)= c=0.02, 
N= 20,000. 
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Fig. 2. 
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As in Figure 1, but now with c(N)=bN -q, where b=0 .04 ,  q=0 .08 ,  N=20 ,000 .  The 
slope in the log- log  plot is ), = 1.09. 

and the large number of realizations, one always has to be aware of 
difficulties with the calculation of the probability distributions. The method 
we choose in the numerical simulations to approximate those distributions 
is to bin the obtained individual numbers. In this way, the values of the 
entropies depend on the number of bins chosen to approximate the probabil- 
ity distributions. To avoid effects due to bad statistics in each individual bin, 
one cannot choose an arbitrarily large number of bins. Just summing up the 
probabilities into the bins leads to an entropy which is always less than the 
"true" entropy one would have obtained in the limit of infinitely many 

pl (nl,N) 

0.0006- 

0 , 0 0 0 5 "  

0.0004 

0.0003" 

0.0002- 

0.0001 ~ 

-A . = ~ . . . .  - A  A . . . - A i l M V ~ r "  " ~ , ,  

50'00 1000O 15000 
I nl 

20000 

Fig. 3. Probability distribution for the first species, compared with the theoretical function 
(16) (smooth curve). Parameters are c(N) = c = 0.02, N = 20,000, and number o f  systems 1000. 
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0 .004" 

0 . 0 0 2 "  

200 400 
~ " �9 I n 5  

660 860 I000 

Fig. 4. As in Figure 3, but now for the fifth species, compared with the theoretical function 
(17). Parameters are as in Figure 3. 

systems. One can correct for this effect if one assumes that within one bin 
one has a uniform distribution, thus adding to the entropies obtained by 
summing over bins a factor logarithm of the number of possible realizations/ 
bin, which leads to an overestimation of  the entropies. In Figure 5 we plot 
the numerically determined specific complexity for several numbers of bins; 
except for the overestimated case, the values are always below the theoretical 
value. However, it seems that the behavior of the numerically determined 

C(N)/A(N) 

2 . 6 '  

2 . 4 '  

2 . 2 "  

[bit] 

-,,,, 

I I ' 
50'00 i0000 15000 20~0%ime N 

Fig. 5. Numerically determined specific complexity, calculated with 64 bins to approximate 
the probability distribution (lowest curve), with 128 bins, and under the assumption of 
equiprobability into the bins (upper curve), compared to the theoretical specific complexity 
(straight line) with N-~ oo. Parameters are as in Figure 4. 
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complexity is in good agreement with the analytically determined value. One 
can do the same procedure for the time-dependent c(N), which is shown in 
Figure 6. 

As a preliminary numerically obtained result we add that this model 
displays one further interesting behavior: as can be seen, for instance, in 
Figure 4, the probability distribution for the individual numbers for one 
species is very broad. In fact it can be shown that the standard deviation of 
the individual number grows proportional to the mean value. In systems 
like texts, for instance, this is a totally unexpected behavior, because an 
experimental verification of Zipf's law would not be possible if the distribu- 
tions were that broad; it would be very improbable to get a correct mean 
value (which is necessary to find Zipf's law) by just considering one realiza- 
tion, as is done in investigations of texts. In the case of the model under 
consideration, we have "ranked" the individual numbers according to the 
creation time of the species. However, this may not be a good way to obtain 
Zipf's law. If one just sorts the systems under consideration according to 
their real, actual individual number, regardless of their creation time, then 
one again obtains Zipf's law (now with an exponent larger than unity--as 
already mentioned, the more conventional case), which can be seen in Figure 
7. In addition, as one calculates the probability distribution for a system 
ranked according to the individual numbers, then the probability distribu- 
tion of each rank becomes a very narrow one, as can be seen in Figure 8 for 
species number 25 versus rank number 25. Thus, the ranking has a severe 
effect on the probability distributions. The analytical results concerning this 
effect and also a more complete discussion will be published elsewhere 
(Wagner et al., 1991). 

C(N)/A(N) 

2.6 

2.4 

2 . 2  

[bit] 

I I ' 
50'00 i0000 15000 20~0~ime N 

Fig. 6. As in Figure 5, but with c(N) given by c(N)=bN -q, with b=0.04, q=0.08, N= 
20,000. 
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<n(k) > 

l I rank k 
~ 'i 1 i 2 

i0 2 . I0 5 . i0 i0 

Fig. 7. Plot of the frequency-rank distribution for the system with constant c(N),  ranked 
according to number of individuals. The straight line represents a curve with slope exactly 1.0, 
while the numerically determined (solid) line has a slope significantly greater than 1; in this 
case one gets approximately 7 = 1.08. 

6. C O N C L U S I O N S  

In this paper we used a very simple Markovian evolution model to 
get acquainted with the properties of  the mutual information between 
two temporally successive states of  a process as a measure of  complexity. 

p25 (n) 
0,14 

0.12 I 
0.i 

0 . 0 8  

i ranked to number 

0.04 

0 . 0 2  

to cleation time 

' 2'5 5'0 75 i00 i~8 i~o n 

Fig. 8. Comparison between the probability distribution for species 5 (according to the crea- 
tion time) and the probability distribution for rank five, which is obtained by sorting each 
system into the ensemble according to the individual numbers. Note that the distribution has 
become very narrow. 
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The analytical results for this system are new and interesting in their own 
right, but we focused our attention on the proposed measure of complex- 
ity. The parameter which determines the behavior of the system is the 
probability for the creation of a new' species c(N). We considered two 
cases: a constant value which in addition is taken to be much smaller 
than one (Section 3), and c as a decreasing function of the number of 
individuals or equivalently of time (Section 4). The most important results 
are the following: 

1. Our model shows in both cases of constant and ofdecreasing generat- 
ing parameter a relation between the mean number of  individuals and the 
number of the corresponding species which is known as Zipf's law. This 
means that the number of individuals of a given species is essentially inversely 
proportional to the rank of that species. This behavior can be observed in 
a wide range of contexts [for a list of references see Schapiro (1991)]. In 
contrast to the quite general nature of our model, which does not specify 
what properties the species or features must have, most of the attempts 
to explain Zipf-like behavior use more stringent assumptions (Guiter and 
Arapov, 1982). 

2. The complexity at a fixed time, regarded as a function of c, has a 
maximum at c = 1 /v~ .  Because the complexity stays finite at its maximum 
and vanishes identically at c-=0, the function C(c) is, in the limit N ~  cv 
(which in our model is the analogue of the "thermodynamic" limit), not 
analytical at c = 0. This nonanalyticity is due alone to the marginal entropy 
of  the system, and thus reminds one of the Bose-Einstein condensation in 
thermodynamics. Indeed, this system can be described in terms of boson 
creation and annihilation operators (G/inther, 1991), which establishes the 
above-mentioned similarity to Bose-Einstein condensation. We note in addi- 
tion that the number of species at the maximum of the complexity is just 
the square root of the number of  individuals. 

3. In the system with constant c, the Zipf structure is not preserved 
in the thermodynamic limit, which has to be compared with the result 
for time-dependent c(N), where this structure is preserved. This can be 
seen in (18). One may speculate that the only systems able to exhibit 
really complex behavior are those in which there is some deceleration in 
the increase of the number of features. This speculation is confirmed by 
our next result: 

4. The complexity of the system with decreasing c(N) is always above 
the complexity of the system with c(N)= const. To be more specific, we 
found a critical value for the specific complexity in the following sense. For 
the model with constant c, the critical value of 2.37 bits is always an upper 
bond, while for the model with decreasing species production rate it is always 
a lower bond for the specific complexity of the system. We interpret this fact 
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in connection with a process of primitive learning: the deceleration of the 
production of new features (species) means the progressive deformation of 
the weight structure upon the existing features. Learning in this sense is the 
building of a reproducible structure of such a deformation, i.e., the building 
of a structure over structure. It is remarkable that the system with learning 
is, according to our model and to this interpretation, always more complex 
than that without learning. 

5. Concerning the case of decreasing generation parameter, we have 
a second result, which is more difficult to understand: If we investigate 
the behavior of the system in the limit of very large values of q, we find 
a complexity increasing with the logarithm of time, just as is the case for 
the complexity of a simple Brownian particle (Schapiro, 1989), a result 
which is counterintuitive at first glance. But if we remember that the 
proposed complexity measure is a measure of the difficulty of forecasting, 
it makes sense: although Brownian motion is a very simple process, and 
so is the behavior of the Markovian evolution model for q ~  oo, the 
concrete realization in the limit of very large times is very hard to forecast, 
in spite of the fact that the immediate future of the system can be 
estimated quite correctly, as the small contribution of the conditional 
entropy suggests. 

Therefore, it may be useful to look more closely at the structure of the 
kind of phase transitions mentioned in the introduction, where the complex- 
ity has a large value at intermediate values of the entropy. In the system we 
considered here, the contribution to the complexity in the limit of large N 
is only due to the marginal entropy. If one considers systems where the 
conditional entropy plays a more dominant role, then we expect a behavior 
similar to what has been observed in Crutchfield and Young (1989) and 
Langton (1990). It is not difficult to construct a model similar to that investi- 
gated in this paper, where one can understand the interplay between mar- 
ginal and conditional entropy (Giinther et al., 1991). 

However, this example shows that there are many conceptual questions 
which remain to be discussed in terms of models and real systems about the 
properties of complex systems. 

Let us make a final remark. The use of Markovian processes also leads 
to a connection between this model and the theory of nonlinear dynamical 
systems, which can be described by Markov chains of finite but arbitrary 
order. It would also be very interesting to look at such systems and see what 
can be learned about them in the light of processes of the type considered 
in this paper. As a first approach, we mention Nicolis and Nicolis (1990) 
and Katsikas and Nicolis (1990), who succeeded in mimicking Zipf's law 
with a generating partition for the logistic map. Further investigations in 
this field are a possible line of research. 
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APPENDIX A. THE PROBABILITY DISTRIBUTIONS FOR 
DIFFERENT SPECIES 

Introducing the generating functions 
N - I  

GA(s; N)  = E SAP( A; N) (Ala) 
A=I 

N - I  

G;(s; N)  = Y, S"'P(n, ; N) (Alb) 
rtt= 1 

we have the corresponding master equations [cf. (6a), (6b)] 

GA(s; N ) =  [1 + ( s -  1)c(N)lG~(s; N) (A2a) 

G.,(s; N) = G.,(s; N) + s ( s -  1) Y O.G.,(s; N) + scP(k - 1 ; N -  1) (A2b) 
N 

These equations are solved quite easily and one gets for the generating 
functions 

N - I  

GA(s; N ) = S  I] [1 +c(k) ( s -  1)] (A3a) 
k=|  

Gk(s; N) = ~ cP(k -1 ;  t) 1+ Iy(j) (A3b) 
t = k - I  /=Ok  S / j = t + l  j 

= 2 c P ( k - l , t )  ~ - s  ( - 1 ) ' - '  I~ 1 - I Y ( j )  (A3c) 
t = k - I  I=1 j = t + l  j 

Because of the starting condition, species number one has a behavior very 
different from the rest of the population. One finds for the probability that 
this species has nl individuals 

1 
Pl(n, ; N ) =  ~--~ tc(rcn,) ~ exp[-(rnO '/c] 

(A4) 
1 

( N -  1) l-c 

This holds for c <~ 1. This result shows that the limit c ~ 0 cannot be derived 
by a perturbation-theoretic approach, because (A4) is not analytical at 
c = 0. The distribution for higher species is given by (13). 

APPENDIX B. THE LIMIT q ~ao 

In this limit there can be at most two species in the population. If we 
choose the constant b in c=bN -q equal to unity, then we have just a new 
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boundary condition; after two time steps we have two species, each having 
one individual. Because the probability to create a new individual is propor- 
tional to the number of those already generated, the probability distribution 
can be written in a simple form. 

We first notice that, according to the definition (3), at the generation 
of the (ni+ l)th individual of a species we get a factor n;. Thus, after the 
nkth individual is created we have a total factor of (nk--1)!. Comparing this 
with the property of the two-dimensional integral in complex space 

f [d~ d~] ~k! (81) e - ~ k ~ l  = 

we can write the probability distribution for the system with two species as 

P(n"n2;N)= k=~ ~ [d~d~] Lexp,--2k=, ~k~k ~2-' ( N - l ) !  

(82) 

With the Gaussian measure we have the following relations: 

(B3) # / .  

Jt~,r d~]e-r ~)g(~) = j [ d ~  d~] e-r dr 

Using this as the expression, we can evaluate (B2): 

1 
P(nj, n2 ; N) = - -  8,, +,x.N (B4) 

( N -  1) 

This means we simply have a uniform distribution, which exists on the line 
nl +n2 =N. 

ACKNOWLEDGMENTS 

It is a pleasure to thank Prof. L. Levitin for many enlightening discus- 
sions on the topics covered here. Discussions with A. Hoff are also gratefully 
acknowledged. 

REFERENCES 

Auerbach, D., and Procaccia, I. (1900). Physical Reoiew A, 41, 6602-6614. 
Badii, R. (1990). Unfolding complexity in nonlinear dynamical systems, in Measures of  Com- 

plexity and Chaos, N. B. Abraham et aL, eds., Plenum Press, New York. 



Physical Complexity and Zipf's Law 543 

Badii, R., Finardi, M., and Broggi, G. (1991 ). Unfolding complexity and modelling asymptotic 
scaling behaviour, in Chaos, Order and Patterns, P. Cvitanovi6, ed., Plenum Press, New 
York. 

Chaitin, G. J. (1966). Journal of the Association for Computing Machinery, 13, 547-560. 
Crutchfield, J. P., and Young, K. (1989). Physical Review Letters, 63, 105. 
D'Alessandro, G., and Politi, A. (1990). Physical Reoiew Letters, 64, 1609-1612. 
Grassberger, P. (1986). International Journal of Theoretical Physics, 25, 907. 
Guiter, H., and Arapov, M. V., eds., Studies on Zipf's Law, Studienverlag Dr. N. Brockmeyer, 

Bochum, Germany. 
Giinther, R. (1991). NMI Internal Report No 4/1991. 
Giinther, R., Schapiro, B., and Wagner, P. (1991). To be published. 
Hogg, T., and Huberman, B. A. (1986). Physica D, 22, 376. 
Kaspar, F., and Schuster, H. G. (1987). Physical Reoiew A, 36, 843-848. 
Katsikas, A. A., and Nicolis, J. S. (1990). Nuovo Cimento D, 12, 177-195. 
Kolmogorov, A. N. (1965). Three approaches to the quantitative definition of information, 

Problems in Information Transmission, 1, I-7. 
Langton, C. G. (1990). Physica D, 42, 12-37. 
Lempel, A., and Ziv, J. (1976). IEEE Transactions Information Theory, 22, 75. 
Nicolis, G., and Nicolis, C. (1990). Physica A, 163, 215-231 
Peliti, L., Vulpiani, A., eds. (1988). Measures of Complexity, Springer-Verlag, Berlin. 
Schapiro, B. (1989). Unpublished work. 
Schapiro, B. (1991). An approach to the physics of complexity, Journal of Nonlinear Biology, 

to appear. 
Shannon, C. E., and Weaver, W. (1959). The Mathematical Theory of Communication, Univer- 

sity of Illinois Press. 
Urias, J. (1991). Physica D, 47, 498-508. 
Wagner, P., Schapiro, B., and Giinther, R. (1991). To be published. 
Wolfram, S. (1984). Communications in Mathematical Physics, 96, 15 (1984). 


